Решение квадратных уравнений с помощью дискриминанта. Решение квадратных уравнений
Квадратные уравнения. Дискриминант. Решение, примеры.
Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно “не очень. ”
И для тех, кто “очень даже. ” )
Виды квадратных уравнений
Что такое квадратное уравнение? Как оно выглядит? В термине квадратное уравнение ключевым словом является “квадратное”. Оно означает, что в уравнении обязательно должен присутствовать икс в квадрате. Кроме него, в уравнении могут быть (а могут и не быть!) просто икс (в первой степени) и просто число (свободный член). И не должно быть иксов в степени, больше двойки.
Говоря математическим языком, квадратное уравнение – это уравнение вида:
Здесь a, b и с – какие-то числа. b и c – совсем любые, а а – любое, кроме нуля. Например:
В этих квадратных уравнениях слева присутствует полный набор членов. Икс в квадрате с коэффициентом а, икс в первой степени с коэффициентом b и свободный член с.
Такие квадратные уравнения называются полными.
А если b = 0, что у нас получится? У нас пропадёт икс в первой степени. От умножения на ноль такое случается.) Получается, например:
И так далее. Если же c = 0, получим уравнение без свободного члена:
И т.п. А если уж оба коэффицента, b и c равны нулю, то всё ещё проще:
Такие уравнения, где чего-то не хватает, называются неполными квадратными уравнениями. Что вполне логично.) Прошу заметить, что икс в квадрате присутствует во всех уравнениях.
Кстати, почему а не может быть равно нулю? А вы подставьте вместо а нолик.) У нас исчезнет икс в квадрате! Уравнение станет линейным. И решается уже совсем иначе.
Вот и все главные виды квадратных уравнений. Полные и неполные.
Решение квадратных уравнений.
Решение полных квадратных уравнений.
Квадратные уравнения решаются просто. По формулам и чётким несложным правилам. На первом этапе надо заданное уравнение привести к стандартному виду, т.е. к виду:
Если уравнение вам дано уже в таком виде – первый этап делать не нужно.) Главное – правильно определить все коэффициенты, а, b и c.
Формула для нахождения корней квадратного уравнения выглядит так:
Выражение под знаком корня называется дискриминант. Но о нём – ниже. Как видим, для нахождения икса, мы используем только a, b и с. Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с в эту формулу и считаем. Подставляем со своими знаками! Например, в уравнении:
Пример практически решён:
Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же…
Самые распространённые ошибки – путаница со знаками значений a, b и с. Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте!
Предположим, надо вот такой примерчик решить:
Допустим, вы знаете, что ответы у вас редко с первого раза получаются.
Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится. Вот и пишем подробно, со всеми скобочками и знаками:
Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно? Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!
Но, частенько, квадратные уравнения выглядят слегка иначе. Например, вот так:
Узнали?) Да! Это неполные квадратные уравнения.
Решение неполных квадратных уравнений.
Их тоже можно решать по общей формуле. Надо только правильно сообразить, чему здесь равняются a, b и с.
Сообразили? В первом примере a = 1; b = -4; а c? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0! Вот и всё. Подставляем в формулу ноль вместо c, и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с, а b !
Но неполные квадратные уравнения можно решать гораздо проще. Безо всяких формул. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.
И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!
Не получается? То-то…
Следовательно, можно уверенно записать: х1 = 0, х2 = 4.
Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем по общей формуле. Замечу, кстати, какой икс будет первым, а какой вторым – абсолютно безразлично. Удобно записывать по порядочку, х1 – то, что меньше, а х2 – то, что больше.
Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:
Остаётся корень извлечь из 9, и всё. Получится:
Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня.
Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…
Дискриминант. Формула дискриминанта.
Волшебное слово дискриминант! Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении.) Напоминаю самую общую формулу для решения любых квадратных уравнений:
Выражение под знаком корня называется дискриминантом. Обычно дискриминант обозначается буквой D. Формула дискриминанта:
D = b 2 – 4ac
И чем же примечательно это выражение? Почему оно заслужило специальное название? В чём смысл дискриминанта? Ведь -b, или 2a в этой формуле специально никак не называют. Буквы и буквы.
Дело вот в чём. При решении квадратного уравнения по этой формуле, возможны всего три случая.
1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.
2. Дискриминант равен нулю. Тогда у вас получится одно решение. Так как от прибавления-вычитания нуля в числителе ничего не меняется. Строго говоря, это не один корень, а два одинаковых. Но, в упрощённом варианте, принято говорить об одном решении.
3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.
Честно говоря, при простом решении квадратных уравнений, понятие дискриминанта не особо-то и требуется. Подставляем в формулу значения коэффициентов, да считаем. Там всё само собой получается, и два корня, и один, и ни одного. Однако, при решении более сложных заданий, без знания смысла и формулы дискриминанта не обойтись. Особенно – в уравнениях с параметрами. Такие уравнения – высший пилотаж на ГИА и ЕГЭ!)
Итак, как решать квадратные уравнения через дискриминант вы вспомнили. Или научились, что тоже неплохо.) Умеете правильно определять a, b и с. Умеете внимательно подставлять их в формулу корней и внимательно считать результат. Вы поняли, что ключевое слово здесь – внимательно?
А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности.… За которые потом бывает больно и обидно…
Приём первый. Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает? Допустим, после всяких преобразований вы получили вот такое уравнение:
Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:
И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:
А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.
Приём второй. Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1, проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т.е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком. Если не получилось – значит уже где-то накосячили. Ищите ошибку.
Если получилось – надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b с противоположным знаком. В нашем случае -1+2 = +1. А коэффициент b, который перед иксом, равен -1. Значит, всё верно!
Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1. Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.
Приём третий. Если в вашем уравнении есть дробные коэффициенты, – избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в уроке “Как решать уравнения? Тождественные преобразования”. При работе с дробями ошибки, почему-то так и лезут…
Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.
Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:
Вот и всё! Решать – одно удовольствие!
Итак, подытожим тему.
1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно.
2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.
3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.
4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!
Дискриминант квадратного уравнения
Дискриминант квадратного уравнения – это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.
Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:
Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:
- Если дискриминант больше нуля, то уравнение имеет два корня.
- Если дискриминант равен нулю, то уравнение имеет один корень.
- Если дискриминант меньше нуля, то уравнение не имеет корней.
Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:
так как она относится к формуле:
которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.
Решение квадратных уравнений через дискриминант
Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.
Пример 1. Решить уравнение:
Определим, чему равны коэффициенты:
D = b 2 – 4ac = (-4) 2 – 4 · 3 · 2 = 16 – 24 = -8, D 2 – 6x + 9 = 0
Определим, чему равны коэффициенты:
D = b 2 – 4ac = (-6) 2 – 4 · 1 · 9 = 36 – 36 = 0, D = 0
Уравнение имеет всего один корень:
Определим, чему равны коэффициенты:
D = b 2 – 4ac = (-4) 2 – 4 · 1 · (-5) = 16 + 20 = 36, D > 0
Три полезных лайфхака, как решать квадратные уравнения быстрее, чем через дискриминант
Я им такую классную теорему придумал,
а они решают через дискриминант :-(((
(с) Франсуа Виет “Несуществующие высказывания”
Формула корней, или длинный способ
Всем, кто хотя бы мало-мальски присутствовал на уроках математики в 8 классе, известна формула корней квадратного уравнения. Решение по формуле корней часто называют в простонародье “решением через дискриминант”. Напомним вкратце формулу корней.
[Вы можете также просмотреть содержание этой статьи в видеоформате]
Квадратное уравнение имеет вид ax 2 +bx+c = 0, где a, b, c – некоторые числа. Например, в уравнении 2x 2 + 3x – 5 = 0 эти числа равны: a = 2, b = 3. c = -5. Прежде, чем решать любое квадратное уравнение, нужно “увидеть” эти числа и понять, чему они равны.
Далее считают так называемый дискриминант по формуле D=b^2-4ac . В нашем случае D = 3^2 – 4 cdot 2 cdot (-5) = 9 + 40 = 49. Затем из дискриминанта извлекают корень: sqrt
После того, как вычислили дискриминант, применяют формулу корней: x_1=frac<-b-sqrt
И таким образом, уравнение решено. Оно имеет два корня: 1 и -2,5.
Но это уравнение, как и множество других предлагаемых в школьных учебниках/задачниках, можно было решить гораздо более быстрым способом, если знать пару-тройку лайфхаков. И речь не только о теореме Виета, хотя и она является полезным инструментом.
Лайфхак первый. Если a + b + c = 0, то x_1=1, x_2=frac .
Он применяется только в том случае, если в квадратном уравнении все три коэффициента a, b, c при сложении дают 0. Например, у нас было уравнение 2x 2 + 3x – 5 = 0. Сложив все три коэффициента, получим 2 + 3 – 5, что равно 0. В этом случае можно не считать дискриминант и не применять формулу корней. Вместо этого можно сразу написать, что
(заметьте, что тот же результат мы получили в формуле корней).
Часто спрашивают, всегда ли будет получаться x_1=1 ? Да, всегда, когда a + b + c = 0.
Лайфхак второй. Если a + c = b, то x_1=-1, x_2=-frac .
Пусть дано уравнение 5x 2 + 6x + 1 = 0. В нём a = 5, b = 6, c = 1. Если сложить “крайние” коэффициенты a и c, получим 5+1 = 6, что как раз равно “среднему” коэффициенту b. Значит, можем обойтись без дискриминанта! Сразу же записываем:
Лайфхак третий (теорема, обратная теореме Виета). Если a = 1, то begin x_1+x_2 = -b \ x_1 cdot x_2 = c endРассмотрим уравнение x 2 – 12x + 35 = 0. В нём a = 1, b = -12, c = 35. Ни под первый, ни под второй лайфхак оно не подходит – условия не соблюдаются. Если бы оно подходило под первый или под второй, то мы бы обошлись без теоремы Виета.
Само использование теоремы Виета подразумевает понимание некоторых полезных приёмов.
Первый приём. Не стоит стесняться записывать саму систему вида begin x_1+x_2 = -b \ x_1 cdot x_2 = c end , которая получается при использовании теоремы Виета. Не нужно пытаться во что бы ты ни стало решить уравнение абсолютно устно, без письменных пометок, как это делают “продвинутые пользователи”.
Для нашего уравнения x 2 – 12x + 35 = 0 эта система имеет вид
begin x_1+x_2 = 12 \ x_1 cdot x_2 = 35 end
Теперь нам нужно устно подобрать числа x_1 и x_2 , которые удовлетворяют нашей системе, т.е. в сумме дают 12, а при умножении 35.
Так вот, второй приём заключается в том, что начинать подбор нужно не с суммы, а с произведения. Посмотрим на второе уравнение системы и зададимся вопросом: какие числа при умножении дают 35? Если всё в порядке с таблицей умножения, то сразу приходит на ум ответ: 7 и 5. И только теперь подставим эти числа в первое уравнение: будем иметь 7 + 5 = 12, что является верным равенством. Итак, числа 7 и 5 удовлетворяют обоим уравнениям, поэтому мы сразу пишем:
Третий приём заключается в том, что если числа не удаётся подобрать быстро (в течение 15-20 секунд), то вне зависимости от причины нужно считать дискриминант и использовать формулу корней. Почему? Потому что корни могут не подбираться, если уравнение их вообще не имеет (дискриминант отрицательный), или же корни представляют собой числа, не являющиеся целыми.
Тренировочные упражнения по решению квадратных уравнений
Попрактикуйтесь! Попробуйте решить следующие уравнения. На каждое уравнение смотрите в следующей последовательности:
- если уравнение подходит под первый лайфхак (когда a + b + c = 0), то решаем с его помощью;
- если уравнение подходит под второй лайфхак (когда a + c = b), то решаем с его помощью;
- если уравнение подходит под третий лайфхак (теорему Виета), решаем с его помощью;
- и только в самом крайнем случае – если ничего не подошло и/или с помощью теоремы Виета решить не получилось – считаем дискриминант. Еще раз: дискриминант – в самую последнюю очередь!
- Решите уравнение x 2 + 3x + 2 = 0
Просмотреть решение и ответ
Решите уравнение x 2 + 8x – 9 = 0
Просмотреть решение и ответ
Решите уравнение 15x 2 – 11x + 2 = 0
Просмотреть решение и ответ
Решите уравнение x 2 + 9x + 20 = 0
Просмотреть решение и ответ
Решите уравнение x 2 – 7x – 30 = 0
Просмотреть решение и ответ
Решите уравнение x 2 – 19x + 18 = 0
Просмотреть решение и ответ
Решите уравнение x 2 + 7x + 6 = 0
Просмотреть решение и ответ
Решите уравнение x 2 – 8x + 12 = 0
Просмотреть решение и ответ
Решите уравнение x 2 – x – 6 = 0
Просмотреть решение и ответ
Решите уравнение x 2 – 15x – 16 = 0
Просмотреть решение и ответ
Решите уравнение x 2 + 11x – 12 = 0
Об отдельных случаях вычисления дискриминанта
Сложно встретить старшеклассника, НЕ умеющего находить корни квадратного уравнения через дискриминант.
Но, к сожалению, в отдельных случаях, получая громоздкий дискриминант, многие начинают паниковать (без калькулятора).

А на ЕГЭ по математике, например, в задачах категории В14, вам вполне может встретиться причудливый дискриминант.
Нет безвыходных ситуаций!
На чем можно сэкономить силы при вычислении дискриминанта
Прежде чем разбирать примеры, вспомним все же формулу дикриминанта
для вычисления корней квадратного уравнения 

Тогда корни уравнения находим по формуле

Надеюсь, вы помните, что удобно искать корни уравнения через дискриминант в случае, если имеем дело с полным квадратным уравнением (
и
– ненулевые).
1) Используем формулу «разность квадратов».
Допустим, нам нужно решить уравнение 
Ясно, что дискриминант следующий: 
Не спешим возводить 53 в квадрат! Замечаем, что
, поэтому

Корни данного уравнения, думаю, теперь каждый из вас найдет без труда…
2) Используем прием вынесения общего множителя за скобки .
Допустим, нам нужно решить уравнение
(кстати, оно взято из реальной текстовой задачи из открытого банка заданий ЕГЭ по математике).
Ясно, что дискриминант следующий: 

Нет, мы не пойдем напролом!
Замечаем, что
, а
.
Мы можем вынести за скобку общий множитель 

Корни найти – уже не проблема…
3) Формула сокращенного дискриимнанта .
Допустим, нам нужно решить уравнение 
Вы знаете, что такое
? + показать
Его очень удобно применять в случае четности второго коэффициента (при x).
Вот формулы дискриминанта и корней в этом случае:
для уравнения
, где
– четное



Тогда корни следующие:
, то есть
или 
Хоть на чуть-чуть, но упростили вычисления. Считаете, что неоправданно, – лишней формулой забивать голову… Выбор за вами.
4) Вместо дискриминанта – т. Виета .

Допустим, нам нужно решить уравнение 
Вспоминаем теорему Виета:
Для приведенного квадратного уравнения (т.е. такого, коэффициент при
в котором равен единице)
сумма корней равна коэффициенту
, взятому с обратным знаком, а произведение корней равно свободному члену
, то есть
,
Так вот, очевидно, на роль корней уравнения
претендуют числа
и
, так как
и 
Вот, пожалуй, все основные случае, где можно сэкономить время и силы при решении квадратного уравнения, о которых я хотела рассказать.
Решение квадратных уравнений
Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.
Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.
Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:
- Не имеют корней;
- Имеют ровно один корень;
- Имеют два различных корня.
В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.
Дискриминант
Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4 ac .
Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:
- Если D 0, корней будет два.
Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:
Задача. Сколько корней имеют квадратные уравнения:
- x 2 − 8 x + 12 = 0;
- 5 x 2 + 3 x + 7 = 0;
- x 2 − 6 x + 9 = 0.
Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16
Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.
Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.
Дискриминант равен нулю — корень будет один.
Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.
Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.
Корни квадратного уравнения
Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:
Основная формула корней квадратного уравнения
Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D
Задача. Решить квадратные уравнения:
- x 2 − 2 x − 3 = 0;
- 15 − 2 x − x 2 = 0;
- x 2 + 12 x + 36 = 0.
Первое уравнение:
x 2 − 2 x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.
D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2 x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.
D > 0 ⇒ уравнение снова имеет два корня. Найдем их
Наконец, третье уравнение:
x 2 + 12 x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.
D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:
Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.
Неполные квадратные уравнения
Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:
Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:
Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением , если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.
Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид a x 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.
Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:
Решение неполного квадратного уравнения
Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (− c / a ) ≥ 0. Вывод:
- Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (− c / a ) ≥ 0, корней будет два. Формула дана выше;
- Если же (− c / a ) 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.
Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:
Вынесение общего множителя за скобку
Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:
Задача. Решить квадратные уравнения:
- x 2 − 7 x = 0;
- 5 x 2 + 30 = 0;
- 4 x 2 − 9 = 0.
x 2 − 7 x = 0 ⇒ x · ( x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.
5 x 2 + 30 = 0 ⇒ 5 x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.
4 x 2 − 9 = 0 ⇒ 4 x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.
Рассмотрим уравнение x 2 – 12x + 35 = 0. В нём a = 1, b = -12, c = 35. Ни под первый, ни под второй лайфхак оно не подходит – условия не соблюдаются. Если бы оно подходило под первый или под второй, то мы бы обошлись без теоремы Виета.
Само использование теоремы Виета подразумевает понимание некоторых полезных приёмов.
Первый приём. Не стоит стесняться записывать саму систему вида begin
Для нашего уравнения x 2 – 12x + 35 = 0 эта система имеет вид
begin
Теперь нам нужно устно подобрать числа x_1 и x_2 , которые удовлетворяют нашей системе, т.е. в сумме дают 12, а при умножении 35.
Так вот, второй приём заключается в том, что начинать подбор нужно не с суммы, а с произведения. Посмотрим на второе уравнение системы и зададимся вопросом: какие числа при умножении дают 35? Если всё в порядке с таблицей умножения, то сразу приходит на ум ответ: 7 и 5. И только теперь подставим эти числа в первое уравнение: будем иметь 7 + 5 = 12, что является верным равенством. Итак, числа 7 и 5 удовлетворяют обоим уравнениям, поэтому мы сразу пишем:
Третий приём заключается в том, что если числа не удаётся подобрать быстро (в течение 15-20 секунд), то вне зависимости от причины нужно считать дискриминант и использовать формулу корней. Почему? Потому что корни могут не подбираться, если уравнение их вообще не имеет (дискриминант отрицательный), или же корни представляют собой числа, не являющиеся целыми.
Тренировочные упражнения по решению квадратных уравнений
Попрактикуйтесь! Попробуйте решить следующие уравнения. На каждое уравнение смотрите в следующей последовательности:
- если уравнение подходит под первый лайфхак (когда a + b + c = 0), то решаем с его помощью;
- если уравнение подходит под второй лайфхак (когда a + c = b), то решаем с его помощью;
- если уравнение подходит под третий лайфхак (теорему Виета), решаем с его помощью;
- и только в самом крайнем случае – если ничего не подошло и/или с помощью теоремы Виета решить не получилось – считаем дискриминант. Еще раз: дискриминант – в самую последнюю очередь!
- Решите уравнение x 2 + 3x + 2 = 0
Просмотреть решение и ответ
Решите уравнение x 2 + 8x – 9 = 0
Просмотреть решение и ответ
Решите уравнение 15x 2 – 11x + 2 = 0
Просмотреть решение и ответ
Решите уравнение x 2 + 9x + 20 = 0
Просмотреть решение и ответ
Решите уравнение x 2 – 7x – 30 = 0
Просмотреть решение и ответ
Решите уравнение x 2 – 19x + 18 = 0
Просмотреть решение и ответ
Решите уравнение x 2 + 7x + 6 = 0
Просмотреть решение и ответ
Решите уравнение x 2 – 8x + 12 = 0
Просмотреть решение и ответ
Решите уравнение x 2 – x – 6 = 0
Просмотреть решение и ответ
Решите уравнение x 2 – 15x – 16 = 0
Просмотреть решение и ответ
Решите уравнение x 2 + 11x – 12 = 0
Об отдельных случаях вычисления дискриминанта
Сложно встретить старшеклассника, НЕ умеющего находить корни квадратного уравнения через дискриминант.
Но, к сожалению, в отдельных случаях, получая громоздкий дискриминант, многие начинают паниковать (без калькулятора).
А на ЕГЭ по математике, например, в задачах категории В14, вам вполне может встретиться причудливый дискриминант.
Нет безвыходных ситуаций!
На чем можно сэкономить силы при вычислении дискриминанта
Прежде чем разбирать примеры, вспомним все же формулу дикриминанта
для вычисления корней квадратного уравнения
Тогда корни уравнения находим по формуле
Надеюсь, вы помните, что удобно искать корни уравнения через дискриминант в случае, если имеем дело с полным квадратным уравнением (
и
– ненулевые).
1) Используем формулу «разность квадратов».
Допустим, нам нужно решить уравнение
Ясно, что дискриминант следующий:
Не спешим возводить 53 в квадрат! Замечаем, что
, поэтому
Корни данного уравнения, думаю, теперь каждый из вас найдет без труда…
2) Используем прием вынесения общего множителя за скобки .
Допустим, нам нужно решить уравнение
(кстати, оно взято из реальной текстовой задачи из открытого банка заданий ЕГЭ по математике).
Ясно, что дискриминант следующий:
Нет, мы не пойдем напролом!
Замечаем, что
, а
.
Мы можем вынести за скобку общий множитель
Корни найти – уже не проблема…
3) Формула сокращенного дискриимнанта .
Допустим, нам нужно решить уравнение
Вы знаете, что такое
? + показать
Его очень удобно применять в случае четности второго коэффициента (при x).
Вот формулы дискриминанта и корней в этом случае:
для уравнения
, где
– четное
Тогда корни следующие:
, то есть
или
Хоть на чуть-чуть, но упростили вычисления. Считаете, что неоправданно, – лишней формулой забивать голову… Выбор за вами.
4) Вместо дискриминанта – т. Виета .
Допустим, нам нужно решить уравнение
Вспоминаем теорему Виета:
Для приведенного квадратного уравнения (т.е. такого, коэффициент при
в котором равен единице)
сумма корней равна коэффициенту
, взятому с обратным знаком, а произведение корней равно свободному члену
, то есть
,
Так вот, очевидно, на роль корней уравнения
претендуют числа
и
, так как
и
Вот, пожалуй, все основные случае, где можно сэкономить время и силы при решении квадратного уравнения, о которых я хотела рассказать.
Решение квадратных уравнений
Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.
Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.
Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:
- Не имеют корней;
- Имеют ровно один корень;
- Имеют два различных корня.
В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.
Дискриминант
Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4 ac .
Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:
- Если D 0, корней будет два.
Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:
Задача. Сколько корней имеют квадратные уравнения:
- x 2 − 8 x + 12 = 0;
- 5 x 2 + 3 x + 7 = 0;
- x 2 − 6 x + 9 = 0.
Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.Дискриминант равен нулю — корень будет один.
Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.
Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.
Корни квадратного уравнения
Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:
Основная формула корней квадратного уравнения
Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D
Задача. Решить квадратные уравнения:
- x 2 − 2 x − 3 = 0;
- 15 − 2 x − x 2 = 0;
- x 2 + 12 x + 36 = 0.
Первое уравнение:
x 2 − 2 x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.D > 0 ⇒ уравнение имеет два корня. Найдем их:
Второе уравнение:
15 − 2 x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.D > 0 ⇒ уравнение снова имеет два корня. Найдем их
Наконец, третье уравнение:
x 2 + 12 x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:
Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.
Неполные квадратные уравнения
Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:
Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:
Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением , если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.
Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид a x 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.
Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:
Решение неполного квадратного уравнения
Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (− c / a ) ≥ 0. Вывод:
- Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (− c / a ) ≥ 0, корней будет два. Формула дана выше;
- Если же (− c / a ) 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.
Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:
Вынесение общего множителя за скобку
Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:
Задача. Решить квадратные уравнения:
- x 2 − 7 x = 0;
- 5 x 2 + 30 = 0;
- 4 x 2 − 9 = 0.
x 2 − 7 x = 0 ⇒ x · ( x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.
5 x 2 + 30 = 0 ⇒ 5 x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.
4 x 2 − 9 = 0 ⇒ 4 x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.