6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Термопреобразователи для измерения температуры

Термопреобразователи для измерения температуры

Чтобы измерить температуру многие специалисты используют термопреобразователи, термометры расширения, термоэлектрические преобразователи и приборы. Иногда в дистанционных системах передачи показаний с термопреобразователями сопротивления и термоэлектропреобразователями также могут использовать и вторичные приборы.

Ко вторичным приборам можно отнести: логометры, автоматические мосты, а также потенциометры. Термометры расширения также могут служить для расширения температуры в помещениях наружного воздуха.

Чувствительный элемент термопреобразователя

Чувствительный элемент преобразователя – это баллон с жидкостью при нагревании которого жидкость будет расширяться и ее столбик поднимется в отсчетном устройстве. Положение определенного конца столбика будет соответствовать температуре среды. Термопреобразователи сопротивления на сегодняшний день применяют в системах, где может потребоваться измерять высокие температуры и передавать все показания в дистанционном порядке. Принцип работы подобных устройств достаточно простой. Он будет основан на свойстве разнообразных металлов изменять свое сопротивление во время изменения температуры. У нас вы также можете прочесть про обустройство правильного заземления.

Чувствительные элементы чаще всего выполнены из платины или меди. Платиновую или медную проволоку необходимо наматывать на каркас. Размеры каркаса в зависимости от конструкции может быть от 60 до 100 мм. Каркас вместе с чувствительным элементом будут помещать в специальный корпус защитной арматуры. Его чаще всего выполняют из нержавеющей стали.

На технологических трубопроводах специальный преобразователь будут вставлять в гнездо, которое в дальнейшем будут укреплять с помощью штуцера. Монтажная длина преобразователей может составлять от 10 до 3150 мм, а диаметр защитной арматуры от 10 до 300 мм.

Статистические характеристики термопреобразователя

На сегодняшний день статистические характеристики термопреобразователя считаются стандартизированы. Они будут выражать зависимость сопротивления чувствительного элемента от измеряемой температуры. Характеристика может обозначаться 1П, 100П, 10м, 100м и прочие значения. Числа будут обозначать сопротивление чувствительного элемента, а буква материал, из которого оно выполнено. В зависимости от точности измерения преобразователи могут иметь пять классов. Их обозначение происходит с помощью римских цифр. У нас вы также можете прочесть про уличные розетки.

Платиновые термопреобразователи сопротивления применяют для измерения температуры в диапазоне от -260 до +1100, а медные для измерения температуры от -200 до +200. Применение преобразователей считается ограничено из-за сравнительно низкой максимальной температуры. Термоэлектропреобразователи более популярны, так как их можно будет использовать для измерения температуры до 1800 градусов.

Сейчас в промышленности могут использовать термопреобразователи из следующих сплавов:

  1. Хромель-копель (ХК).
  2. Хромель-алюмель (ХА).
  3. Платинородий-платина (ПП).
  4. Платинородий-платинородий (ПР).

Каждый тип продукции может иметь свой собственный диапазон температур. Термоэлектропреобразователь будет иметь подобную конструкцию с термопреобразователем. Чувствительный элемент этого изделия будет помещаться в специальный корпус и представлять собою спай термоэлектродов, которые будут припаяны к серебряному диску. Затем термоэлектроды будут выводиться через каналы изолирующих бус на зажимы головки. В дальнейшем термоэлектропреобразователь будут крепить с помощью специальных штуцеров и фланцев.

Сложность применения подобных изделий будет заключаться в том, что необходимо стабилизировать температуру их свободных концов. Если температура холодных концов будет изменяться, а температура погружения горячего конца останется неизменной, тогда значения также будут изменяться.

На данный момент для каждого типа термоэлектропреобразователя устанавливается определенная марка компенсационных проводов. При подключении холодных концов к компенсационным проводам между каждым термоэлектродом будет образовываться термопара. Материалы компенсационных проводов необходимо подбирать таким образом, чтобы для каждой термопары они были равны между собой и включены встречно. Во вторичном приборе будут устанавливать специальное устройство, которое сможет автоматически вносить поправки в значение т.э.д.с. в зависимости от температуры.

Манометрические термометры могут применять для измерения температуры в зонах аппаратов. Принцип их действия считается достаточно простым, и он будет основан на зависимости между температурой и давлением жидкости при постоянном объеме. В дальнейшем измерительную систему будут заполнять с помощью газа.

Термобаллон будут погружать в специальную среду, температуру которой будут измерять. Термобаллон соединяются с манометром с помощью капилляра. Во время измерения температуры будет изменяться давление, которое заполнит систему жидкости или газа. Затем через капилляр давление будет подводиться к пружине, припаянной к корпусу. При повышении температуры давление увеличивается и под воздействием раскручивается манометрическая пружина. Когда давление будет уменьшаться она закручивается. Через тягу перемещение конца пружины будет передаваться на трибко-секторный механизм. На ось трибки будет насаживаться стрелка, которая перемешается по шкале измеряемого давления.

Теперь вы точно знаете устройство термопреобразователя и приборов температуры. Надеемся, что эта информация была полезной и интересной.

Термопреобразователь: принцип работы

Термопреобразователь сопротивления (ТС) – средство измерений температуры, предназначенны для подключения к измерительному прибору.

Термопреобразователь сопротивления (ТС) – средство измерений температуры, состоящее из одного или нескольких термочувствительных элементов сопротивления и внутренних соединительных проводов, помещенных в герметичный защитный корпус, внешних клемм или выводов, предназначенных для подключения к измерительному прибору.

Чувствительный элемент (ЧЭ) первичного преобразователя выполнен из металлической проволоки бифилярной намотки или пленки, нанесенной на диэлектрическую подложку в виде меандра. ЧЭ имеет выводы для крепления соединительных проводов и известную зависимость электрического сопротивления от температуры.

Принцип работы такой термопары сопротивления (термометра сопротивления) основан на изменении электрического сопротивления термочувствительного элемента от температуры.Самый популярный тип термометра – платиновый термометр сопротивления ТСП градуировки Pt100. В качестве рабочих средств измерений применяются также медные термометры.

Главное преимущество термометров сопротивления – высокая стабильность, близость характеристики к линейной зависимости, высокая взаимозаменяемость. Пленочные платиновые термометры сопротивления отличаются повышенной вибропрочностью.

Недостаток термометров и чувствительных элементов сопротивления – необходимость использования для точных измерений трех- или четырехпроводной схемы включения, т.к. при подключении датчика с помощью двух проводов, их сопротивление включается измеренное сопротивление термометра.

Для измерения температуры различных типов рабочих сред – воды, газа, пара, химических соединений и сыпучих материалов используют термопреобразователь ТСП. Аналогом, производимым Производственной компанией “Тесей”, является термопреобразователи сопротивления типа ТСПТ и ТСПТ Ех.Номинальная статическая характеристика термопреобразователей – Pt100, Pt500, Pt1000, 100П и 50П.

Выбор термопреобразователя ТСП зависит от рабочей среды – диапазон температур измеряемой среды должен соответствовать рабочему диапазону термопреобразователя. При выборе необходимо обратить внимание надлину погружной части термопреобразователя и длину соединительного кабеля. Глубина погружения будет зависеть от глубины активной части, которая определяется длиной чувствительного элемента.

Термопреобразователь сопротивления ТСМ. Термопреобразователь ТСМ выполнен в виде бескаркасной намотки чувствительного элемента из медного изолированного микропроводабифилярной намотки. Аналогом, производимым Производственной компанией “Тесей”, является термопреобразователи сопротивления типа ТСМТ и ТСМТ Ех.Номинальная статическая характеристика термопреобразователей – 100М или 50М.

Используется 3 схемы включения датчика в измерительную цепь (подключение термопары):

  • 2-проводная. В схеме подключения простейшего термометра сопротивления используется два провода. Такая схема термометра сопротивления используется там, где не требуется высокой точности, так как сопротивление проводов включается в измеренное сопротивление и приводит к появлению дополнительной погрешности. Такая схема не применяется для термометров класса А и АА.
  • 3-проводная обеспечивает значительно более точные измерения за счёт того, что появляется возможность измерить в отдельном опыте сопротивление подводящих проводов и учесть их влияние на точность измерения сопротивления датчика.
  • 4-проводная — наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов.

Термопара принцип действия термопреобразователя сопротивления ТСПТ (ТСМТ)

Термопреобразователи сопротивления ТСПТ (ТСМТ) с двухпроводной схемой подключения изготавливаться только с классом допуска В или С и имеют ограничения по монтажным длинам и длинам удлинительных проводов. В соответствии с требованиями ГОСТ 6651-2009, для датчиков с двух проводной схемой подключения, сопротивление внутренних проводов не должно превышать 0,1% номинального сопротивления ТС при 0°С. В связи с этим для различных НСХ присутствуют ограничения по монтажным длинам:

– для датчиков с клеммной головкой максимальная монтажная длина составляет Lmax= (500÷1250) мм в зависимости от конструктивной модификации,
– для датчиков с удлинительным проводом, максимальная длина провода составляет ℓ max= (500÷1000) мм в зависимости от конструктивной модификации.

Датчики с трех- и четырехпроводной схемой подключения, в зависимости от конструктивных модификаций, изготавливаются по классу допуска АА, А, В, С. При изготовлении ограничения по монтажным длинам и длинам удлинительных проводов отсутствуют. Следует учитывать, что у вторичных приборов, к которым подключаются датчики, могут существовать ограничения по входному сопротивлению измерительной линии, которая в свою очередь зависит от длины провода датчика.

Таблица 1. Номинальное сопротивление R0

Pt

П

М

Температурный коэффициент a, °С-1

0,00385

0,00391

0,00428

Номинальное сопротивление R , Ом

Неопределенность измерений термометров сопротивления

Термопреобразователь сопротивления может быть признан годным изготовителем (или поверочным центром), если отклонение сопротивления ТС от НСХ с учетом расширенной неопределенности измерения в лаборатории изготовителя или поверителя, рассчитанное в эквиваленте температуры (R–Rнсх ± Uпр)/(dR/dt), находится внутри интервала допуска ±Δt (см. ТС № 1 на рис. 3).

Термопреобразователь сопротивления может быть забракован потребителем только в том случае, если отклонение сопротивления ТС от НСХ с учетом расширенной неопределенности измерения в условиях использования термометра потребителем, рассчитанное в эквиваленте температуры (R–Rнсх ± Uпотр)/(dR/dt), находится полностью вне интервала допуска ±Δt.

Читать еще:  Породы пчёл: описание и фото самых популярных пород пчёл

Такое правило приемки с одной стороны снижает риск потребителя, который может приобрести некачественный термометр сопротивления только по причине больших погрешностей измерений на производстве, с другой стороны, это правило стимулирует изготовителя использовать при приемке термометров высокоточное измерительное оборудование. Правило также является очень важным при установлении брака Заказчиком, т. к. Заказчик тоже обязан оценить неопределенность своих измерений и уже после этого предъявлять претензии к изготовителю.

Объем и последовательность первичной и периодической поверок ТС установлены в соответствии с ГОСТ Р 8.624 при этом перечень обязательных контролируемых параметров одинаков. Первичная поверка, осуществляемая аккредитованной метрологической службой нашего предприятия, совмещается с приемо-сдаточными испытаниями.

На неопределенность результатов измерений температуры термопарами и термометрами сопротивления влияют многие факторы, основные из них это:

– случайные эффекты при измерении;
– неопределенность измерения регистрирующего прибора;
– класс допуска термопары или термометра сопротивления;
– изменение характеристики ТП или ТС за межповерочный интервал (МПИ);
– для ТП дополнительно класс точности удлинительных проводов, соединяющей термопару с регистрирующим прибором и погрешность компенсации температуры опорных спаев;

Характеристики источников неопределенности измерения температуры термоэлектрическим преобразователем представлены в таблице 3. Бюджет неопределенности составлен в соответствии с Руководством по выражению неопределенностей и нормативными документами.

Вклад случайных эффектов, характеристики нестабильности измеряемой температуры и теплового контакта со средой в расчетах не учитывались, исходя из того, что эти величины зависят от условий применения.

Выбор измерительного тока также влияет на точность измерения температуры. Поскольку ЧЭ изготовлен из очень тонкой проволоки или пленки, даже малый ток может вызвать существенный нагрев ЧЭ. Во избежание значительного увеличения погрешности из-за нагрева ЧЭ измерительным током для 100-омных ТС рекомендуется использовать токи 1 мА и ниже. В этом случае погрешность не превысит 0,1 °С. Для снижения эффекта нагрева ЧЭ иногда используется импульсный измерительный ток.

Источники неопределенности измерения температуры на объекте

В новом стандарте ГОСТ Р 8.625-2006 приведены правила отбраковки термометра сопротивления потребителем. В них установлено, что забраковать термометр можно только, если отклонение сопротивления термометра от НСХ лежит полностью вне диапазона, обусловленного расширенной неопределенностью измерения температуры в рабочих условиях. Поэтому становится очень актуальной проблема оценки неопределенности, возникающей при измерении температуры на объекте. Источники неопределенности измерения температуры промышленным термометром сопротивления можно разделить на источники, связанные с физическими условиями работы ТС и электрическим преобразованием сигнала:

– теплопроводящие свойства данной конструкции термометра и монтажных элементов;
– перенос тепла излучением в окружающую среду;
– теплоемкость датчика температуры;
– скорость изменения измеряемой температуры;
– утечки тока (качество заземления);
– электрические шумы;
– точность измерителя или преобразователя сигнала.

Стабильность метрологических характеристик термометра сопротивления

В ходе эксплуатации метрологические характеристики термопреобразователей сопротивления неизбежно изменяются. Скорость изменения зависит от многих факторов таких как: температура эксплуатации, скорость и частота изменений температуры, наличие химически активных веществ в измеряемой среде и т.д. В связи с этим для датчиков ТСПТ, ТСМТ, ТСПТ Ex, ТСМТ Ex введены группы условий эксплуатации и в зависимости от этой группы нормированы допустимые значения дрейфа метрологических характеристик термометров сопротивления.

РМГ-74 «МЕТОДЫ ОПРЕДЕЛЕНИЯ МЕЖПОВЕРОЧНЫХ И МЕЖКАЛИБРОВОЧНЫХ ИНТЕРВАЛОВ СРЕДСТВ ИЗМЕРЕНИЙ» предписывает определять интервал между поверками (ИМП) как период времени/наработки СИ за который изменение метрологических характеристик не превышает модуля класса допуска СИ, уменьшенного на систематическую погрешность измерений в ходе испытаний СИ.

Для термопреобразователя сопротивления определяющим фактором дрейфа является наработка датчика при повышенной температуре. Влияние старения на дрейф ТС практически не упоминается в научных публикациях. При этом общеизвестно что величина и скорость дрейфа ТС зависит от величины измеряемой температуры. Известно, что медные термопреобразователи сопротивления менее стабильны чем платиновые. Доминирующей причиной дрейфа, в условиях эксплуатации, не относящихся к экстремальным, является изменение физических свойств металлов под воздействием температуры, величина изменений зависит от значения максимальной температуры эксплуатации и длительности воздействия.

Предлагается при нормировании интервалов между поверками учитывать условия эксплуатации, разделив их по диапазонам измеряемых температур. Для каждого из диапазонов указывать свой интервал между поверками от одного года до пяти лет. Предлагаемая градация интервалов представлена на рисунке 4.

ГК «Теплоприбор» – разработка, производство и комплексная поставка контрольно-измерительных приборов и автоматики — КИПиА.

Группа компаний (ГК) «Теплоприбор» (Теплоприборы, Промприбор, Теплоконтроль и др.) — это приборы и автоматика для измерения, контроля и регулирования параметров технологических процессов (расходометрия, теплоконтроль, теплоучёт, контроль давления, уровня, свойств и концентрации и пр.).

По цене производителя отгружается продукция как собственного производства, так и наших партнёров — ведущих заводов — производителей КИПиА, аппаратуры регулирования, систем и оборудования для управления технологическими процессами — АСУ ТП (многое имеется в наличии на складе или может быть изготовлено и отгружено в кратчайшие сроки).

Теплоприбор.рф — официальный сайт ГК «Теплоприбор» — это гарантия качества, сроков, справедливой стоимости и прайс-листа с актуальными ценами* (любое предложение на сайте не является публичной офертой).

География ГК «Теплоприбор»:
Москва, Рязань, Челябинск, Казань, Екатеринбург, Санкт-Петербург, Новосибирск, Нижний Новгород, Самара, Ростов-на-Дону, Уфа, Красноярск, Пермь, Воронеж, Белгород, Волгоград, Краснодар, Саратов, Тюмень, Томск, Омск, Иркутск, Улан-Удэ, Саранск, Чебоксары, Ярославль и другие города РФ, также мы работаем с Белоруссией, Украиной и Казахстаном.

Рекомендации как правильно выбрать, заказать и купить контрольно-измерительные приборы и автоматику (КИПиА), дополнительное/вспомогательное оборудование и защитно-монтажную арматуру, а также другую полезную и интересную информацию см. наши официальные сайты.

Работа и вакансии: в Московский офис (СЗАО, ст. метро Планерная, р-н Куркино (рядом МКАД и г. Химки) требуется менеджер по сбыту КИПиА, ЗП достойная, возможна удаленная работа оклад + %.
teplokip@yandex.ru

Новые публикации: Статья «Датчики давления. Сравнительный обзор видов, характеристик и цен.»

2.1. Датчики температуры (термопреобразователи)

2.1.1. Термометры сопротивления (термосопротивления)

термометры сопротивления ТСПТ (платиновые), ТСМТ (медные) для измерения температуры пластических масс и резиновых смесей в термопласт-автоматах, литьевых и прессовых машинах, классы допуска АА, А, В, С, Тос -60. +120ºС, Ра 0,1 МПа, IP40, IP65, монтажная длина L 60. 160 мм, кт ±0,1. 0,4 %, присоединение к процессу: ГБ 12, М12х1,5; М16х1,5; М20х1,5, сталь 12Х18Н10Т

2.1.2. Термоэлектрические преобразователи (термопары)

2.1.3. Комплекты термометров сопротивления

2.1.4. Термопреобразователи с унифицированным выходным сигналом

2.1.5. Взрывозащищенные термопреобразователи ТС/ТП-Exi/Exd

термометры сопротивления ТСПТ (платиновые), ТСМТ (медные) для измерения температуры пластических масс и резиновых смесей в термопласт-автоматах, литьевых и прессовых машинах, классы допуска АА, А, В, С, Тос -60. +120ºС, Ра 0,1 МПа, IP40, IP65, монтажная длина L 60. 160 мм, кт ±0,1. 0,4 %, присоединение к процессу: ГБ 12, М12х1,5; М16х1,5; М20х1,5, сталь 12Х18Н10Т

2.1.6. Датчики влажности и температуры

250 В×5 А; =250 В×0,1 А), ДИ Тис 0. +100 °С, -40. +110 °С, влажност 0. 100%, выход 0-5 или 4-20мА, к.т. ±0,25%, Тос -10…+50 °C, длина линии связи с датчиками до 200м. N91

2.1.7. Нормирующие преобразователи

2.1.8. Вспомогательное оборудование и арматура

2.1.9. Эталонные термометры и термопреобразователи

187…242 В, 50±1 Гц

Датчики температуры (термопреобразователи)

Термопреобразователи — это класс первичных приборов измерения температуры, к которым относятся термометры сопротивления и термопары.

Термопреобразователь (преобразователь, датчик температуры) – это средство измерения (прибор), преобразующий измеряемую температуру в сигнал (НСХ, унифицированный токовый сигнал) для последующей передачи, обработки или регистрации средствами автоматизации ТП.

1. Термопреобразователи (термометры) сопротивления — ТС

В основном в промышленности применяются термометры сопротивления — ТС (термосопротивления), имеющие следующие
НСХ (номинальная статическая характеристика):
медные ТС — ТСМ (Cu),
платиновые ТС- ТСП (Pt),
никелевые ТС — ТСН (Ni),
со следующими номинальными сопротивлениями – 50Ом, 100Ом, 500Ом, 1000Ом, 23Ом гр.(53М) и др. градуировки.

От вида термопреобразователя сопротивления зависит точность и диапазон измерения, например:

ТСМ — термопреобразователь сопротивления (термометр сопротивления) медный c НСХ: 50М, 100М, 53М(гр. 23) и др.
Диапазон измерения температуры ТСМ: -100…+200С.

ТСП — термопреобразователь сопротивления (термометр сопротивления) платиновый c НСХ: 50П, 100П, Pt50, Pt100, Pt500, Pt1000 и др.
Диапазон измерения температуры ТСП: -200…+500 (мах. до 750)С.

Варианты конструктивного исполнения термометров сопротивления ТС — ТСМ/ТСП:
а) С коммутационной головкой
с пластмассовыми (до 300С) и металлическими (до 500С) коммутационными головками.
б) С встроенным кабельным выводом длиной до 20 метров, с монтажным штуцером и без, диапазон измерения -50…+180С (для медных ТСМ) и -50…+250С (для платиновых ТСП).

2. Преобразователи термоэлектрические (термопары) — ТП

Применяемые в промышленности НСХ термоэлектрических преобразователей — ТП:
ТХК(L), ТХА(K), ТПП(S,R), ТПР(B), ТЖК(J), ТНН(N), ТВР(A-1,2,3), ТМК(T).
Варианты конструктивного исполнения термопар:
а) С коммутационной головкой
с пластмассовыми (до 400С) и металлическими (до 1200С) коммутационными головками.
б) С термопарным кабелем
с встроенным кабельным выводом длиной до 20 метров, с монтажным штуцером и без, диапазон измерения -40…+400С.
в) В мягкой изоляции (поверхностные)
изоляция — нить К11С6 до 800С или трубка МКР до 1100С.
г) Высокотемпературные (поверхностные в керамической-Al2O3 трубке):
платиновые ТПП-S/R-021 до 1300С,
платина-родиевые ТПР-В-021 +600+1600С
д) Разборные, унифицированные с термометрической вставкой ТПК-ХА, ТПL-ХК

Читать еще:  Праймер для пластика и битумный грунт

3. Термопреобразователи (датчики температуры) с унифицированным выходным сигналом

ТСПУ, ТСМУ, ТХАУ, ТХКУ с выходным сигналом тока 0-5мА, 0-20мА, 4-20мА (сигнал соответствует 0-100% диапазона измерения).

4. Арматура (монтажная и установочная) для датчиков температуры (термопреобразователей)

Бобышки прямые -БП и скошенные — БС.
(бобышки предназначены для установки на месте эксплуатации термопреобразователей и защитных гильз).

Гильзы защитные ГЗ-015, ГЗ-016, ГТ-015, ГЗ-6,3/25/50 и др.
(гильза защитная предназначена для установки термопреобразователей на объектах и обеспечивает их защиту от воздействия давления рабочей среды).

Штуцер передвижной ШП
(штуцера передвижные предназначены для крепления и регулирования глубины погружения термопреобразователей в зоне измеряемых температур).


5. Провода и кабели монтажные

а) Кабели термоэлектродные (кабель компенсационный термопарный КТК, КТL)
— кабель термоэлектродный KTK-ХА до 800С, KTL-ХК до 600С
(2х 0,3-1,2мм , изоляция — кремнеземная нить К11С6 с пропиткой лаком КО);
— провод термоэлектродный СФКЭ, ПТВВГ, ПТРФ, МГТФ и другие.

б) Провода монтажные медные
Применяются двух-, трех- и четырех-жильные для монтажа ТСМ, ТСП (выполненных по двух, трех и четырех проводной схеме соответственно).

Рекомендации как правильно выбрать, заказать и купить приборы.
* Рекомендуем уточнять цены на момент выписки счета, т.к. реальная стоимость продукции может незначительно отличаться от заявленной в силу периодичности обновления прайс-листа, объема заказа, условий поставки и других факторов. Оптовая цена указана на базовые исполнение без учета НДС, стоимости дополнительного оборудования, услуг, расходов на тару-упаковку и доставку. Действует гибкая система скидок и спец. предложений.

Внимание! Будьте осторожны при выборе поставщика — на рынке КИПиА имеются дешевые некачественные копии: аналоги, подделки и восстановленные неликвиды, лишенные должного сервиса, гарантии, с меньшими или истекающими сроками поверки или в неполной комплектации.
Подробнее о контрафакте
Предупреждение о воровстве контента

Что такое термопара, принцип действия, основные виды и типы

Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С — керамика с повышенным содержанием Al2O3, свыше 1400°С — керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Схема подключения термопары

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.
Читать еще:  Покупаем новый матрас: какие параметры учесть?

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Причины выхода из строя термопары:

  1. Неиспользование защитного экранирующего устройства;
  2. Изменение химического состава электродов;
  3. Окислительные процессы, развивающиеся при высоких температурах;
  4. Поломка контрольно-измерительного прибора и т.д.

Преимущества и недостатки использования термопар

Достоинствами использования данного устройства можно назвать:

  • Большой температурный диапазон измерений;
  • Высокая точность;
  • Простота и надежность.

К недостаткам следует отнести:

  • Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
  • Структурные изменения металлов при изготовлении прибора;
  • Зависимость от состава атмосферы, затраты на герметизацию;
  • Погрешность измерений из-за воздействия электромагнитных волн.

О термопарах: что это такое, принцип действия, подключение, применение

В автоматизации технологических процессов очень часто приходится снимать показатели о температурных изменениях, для их загрузки в системы управления, с целью дальнейшей обработки. Для этого требуются высокоточные, малоинерционные датчики, способные выдерживать большие температурные нагрузки в определённом диапазоне измерений. В качестве термоэлектрического преобразователя широко используются термопары – дифференциальные устройства, преобразующие тепловую энергию в электрическую.

Устройства также являются простым и удобным датчиком температуры для термоэлектрического термометра, предназначенного для осуществления точных измерений в пределах довольно широких температурных диапазонов. В частности, управляющая автоматика газовых котлов и других отопительных систем срабатывает от электрического сигнала, поступающего от сенсора на базе термопары. Конструкции датчика обеспечивают необходимую точность измерений в выбранном диапазоне температур.

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.

Рис. 1. Схема строения термопары

Красным цветом выделено зону горячего спая, синим – холодный спай.

Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).

Рис. 2. Термопара с керамическими бусами

Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС. Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает. Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.

Рис. 3. Измерение напряжения на проводах ТП

Примечательно, что напряжение на холодных концах электродов пропорционально зависит от температуры в области горячей спайки. Другими словами, в определённом диапазоне температур мы наблюдаем линейную термоэлектрическую характеристику, отображающую зависимость напряжения от величины разности температур между точками горячей и холодной спайки. Строго говоря, о линейности показателей можно говорить лишь в том случае, когда температура в области холодной спайки постоянна. Это следует учитывать при выполнении градуировок термопар. Если на холодных концах электродов температура будет изменяться, то погрешность измерения может оказаться довольно значительной.

В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не такие жёсткие и погрешность может быть на порядок ниже.

Рис. 4. Решение вопроса точности показаний термопар

На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.

Типы термопар и их характеристики

Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:

  • ТПП13 – платинородий-платиновые (тип R);
  • ТПП10 – платинородий-платиновые (тип S);
  • ТПР – платинородий-платинродиевые (тип B);
  • ТЖК – железо-константановые (тип J);
  • ТМКн – медь-константановые (тип T);
  • ТНН – нихросил-нисиловые (тип N);
  • ТХА – хромель-алюмелевые (тип K);
  • ТХКн – хромель-константановые (тип E);
  • ТХК – хромель-копелевые (тип L);
  • ТМК – медь-копелевые (тип M);
  • ТСС – сильх-силиновые (тип I);
  • ТВР – вольфрамрениевые (типы A-1 – A-3).

Технические требования к термопарам задаются параметрами определёнными ГОСТ 6616-94, а их НСХ (номинальные статические характеристики преобразования), оптимальные диапазоны измерений, установленные классы допуска регулируются стандартами МЭК 62460, и определены ГОСТ Р 8.585-2001. Заметим, также, что НСХ в вольфрам-рениевых термопарах отсутствовали в таблицах МЭК до 2008 г. На сегодняшний день указанными стандартами не определены характеристики термопары хромель-копель, но их параметры по прежнему регулируются ГОСТ Р 8.585-2001. Поэтому импортные термопары типа L не являются полным аналогом отечественного изделия ТХК.

Классификацию термодатчиков можно провести и по другим признакам: по типу спаев, количеству чувствительных элементов.

Типы спаев

В зависимости от назначения термодатчика спаи термопар могут иметь различную конфигурацию. Существуют одноэлементные и двухэлементные спаи. Они могут быть как заземлёнными на корпус колбы, так и незаземленными. Понять схемы таких конструкций можно из рисунка 5.

Рис. 5. Типы спаев

Буквами обозначено:

  • И – один спай, изолированный от корпуса;
  • Н – один соединённый с корпусом спай;
  • ИИ – два изолированных друг от друга и от корпуса спая;
  • 2И – сдвоенный спай, изолированный от корпуса;
  • ИН – два спая, один из которых заземлён;
  • НН – два неизолированных спая, соединённых с корпусом.

Заземление на корпус снижает инерционность термопары, что, в свою очередь, повышает быстродействие датчика и увеличивает точность измерений в режиме реального времени.

С целью уменьшения инерционности в некоторых моделях термоэлектрических преобразователей оставляют горячий спай снаружи защитной колбы.

Многоточечные термопары

Часто требуется измерение температуры в различных точках одновременно. Многоточечные термопары решают эту проблему: они фиксируют данные о температуре вдоль оси преобразователя. Такая необходимость возникает в химических и нефтехимических отраслях, где требуется получать информацию о распределении температуры в реакторах, колоннах фракционирования и в других ёмкостях, предназначенных для переработки жидкостей химическим способом.

Многоточечные измерительные преобразователи температуры повышают экономичность, не требуют сложного обслуживания. Количество точек сбора данных может достигать до 60. При этом используется только одна колба и одна точка ввода в установку.

Таблица сравнения термопар

Выше мы рассмотрели типы термоэлектрических преобразователей. У читателя, скорее всего, резонно возник вопрос: Почему так много типов термопар существует?

Дело в том, что заявленная производителем точность измерений возможна только в определённом интервале температур. Именно в этом диапазоне производитель гарантирует линейную характеристику своего изделия. В других диапазонах зависимость напряжения от температуры может быть нелинейной, а это обязательно отобразится на точности. Следует учитывать, что материалы обладают разной степенью плавкости, поэтому для них существует предельное значение рабочих температур.

Для сравнения термопар составлены таблицы, в которых отображены основные параметры измерительных преобразователей. В качестве примера приводим один из вариантов таблицы для сравнения распространённых термопар.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: